“Wow, talk about passion–Tim loves nature and ecology so much and I couldn’t help but get excited about [it] myself. Thank you Tim!”

SSC ’04 Naturalist Review

Citizen science opportunity: Zooniverse.org

Ever wanted to contribute to science research from the comfort of your home? I have! Some people-powered research opportunities over here: https://www.zooniverse.org

I work as a data visualization designer, science communicator, and enthusiastic promoter of information for public impact.

Three character, first-name handles are rare in the online world, and I’ve got a 💯 one on Instagram: @tim. But having one’s not all roses and puppies (though, frankly, it is quite a few puppies, but that’s a topic for a future post). There’s also thousands of mistaken tags, and an inordinate number of 12 year old boys thirsty for my screenname (Hello, all people named Tim!).

Then, there are the fake accounts.

What distinguishes a fake account from a real one? Often, it’s a mishmash of factors: no profile picture, a spam link in the bio, random assortments of digits in the handle, or even just content targeted towards an oddly specific segment of a particular interest group.

This week in fake social media accounts was defined by:

This cropped, zoomed image of three Instagram profiles shows the repetitive handles used by fake accounts in the form "first name" "dot" "last name" "underscore" "two digit number"

1. Handles with broadly Eastern European (Russian? Ukrainian? Belarusian?) names in the form <first name>.<last name>_##

This zoomed, cropped image of three Instagram profiles shows three profile pictures of cars

2. Profile pics of classic cars, for some reason

This zoomed, cropped image of three Instagram profiles shows stolen, duplicated content of rock climbers on ostensibly unique accounts

3. Each profile containing obviously stolen and duplicated content

I note all this not because there’s some substantial injury taking place–though I bet the original creators of those climbing videos would not appreciate their content being stolen–but because I want a world where we can trust what we find on these social media platforms. Am I asking for too much?

Originally published over at the TerraPass Footprint.

A giant hole in the global carbon budget may be plugged by an unlikely source: fish guts.

A large proportion of manmade CO2 emissions drain back out of the atmosphere into various carbon sinks. Scientists have long known that approximately half the CO2 flux from the atmosphere goes to land-based sinks and half to the ocean. The problem is that the math hasn’t quite added up.

Terrestrial sinks like forests and savannas, in addition to the long-term storage in soils, are relatively well quantified. Primary absorption in the oceans, too, has been fairly well described: satellite imagery of the open ocean has been used to map and calculate the amount of primary absorption across 70% of the earth’s surface.

Still, the numbers contain a substantial gap. Since the terrestrial sinks are comparatively better understood, and the CO2 in the atmosphere has to go somewhere, most scientists assumed that it was somehow ending up in the ocean. But where?

Almost twenty years ago, researchers at the University of Miami discovered that a species of toadfish carries tiny balls of calcite (CaCO3) in its gut. The authors suggested that this was likely a result of a filtration system in the fish’s stomach: water breathed in and out by the fish would need to be cleaned of various salts, including calcium and magnesium, to maintain proper salinity. These salts combine with carbon in seawater to form carbonates, which precipitate and collect in the fish’s gut.

It turns out that toadfish aren’t unique. All bony fishes have this feature. A new study calculates that these tiny calcite stones could be a missing sink that accounts for 3-15% of the oceanic carbon absorption. That’s a big hole to plug, and the study’s figures are conservative. The actual number could be significantly higher.

This provides another reason to be concerned with declining fish stocks worldwide. In addition to missing out on your favorite tuna sandwich, the global fisheries collapse could end a vital sink for atmospheric carbon.